

Nuclear Energy

Fuel Cycle Research and Development

Historical and Current Crucible Materials and the Effects on Processing

Randall Fielding, Ken Marsden, Dr. Ki-Hwan Kim* Idaho National Laboratory

* Korean Atomic Energy Research Institute (KAERI)

2012 International Pyroprocessing Research Conference

Aug. 26 – Aug. 30, 2012

Outline

- **■** Introduction
- **■** Historical Coatings
- Current Coatings in pyroprocessing and fuel fabrication
- Conclusions/Future Plans

Introduction

- Uranium melts are quite reactive and will react with many commonly used crucible materials
- U-Zr melts are more reactive and further react with common crucible materials
 - Reduces many crucibles (oxides and others)
 - Dissolves graphite materials
- Coatings are used to protect the crucible from interaction and in some cases from wetting by the melt
- Common crucible or coatings include:
 - Y_2O_3
 - ZrO₂
 - ThO₂
 - MgO
 - Er_2O_3
 - Others
- Goal- To produce a coating that is non-reactive and is re-useable or can be efficiently applied remotely

Experience

- EBR-II 1964-1969 Fuel Demonstration Project
 - Melt refining followed by fuel fabrication
- EBR-II 1984-1994 Integral Fast Reactor
 - Pyrometallurgical separations followed by fuel fabrication
- EBR-II Fresh Fuel Fabrication- multiple time periods after the Fuel Demonstration Project
- Advanced separations and fuel fabrication research Present
 - Processing of spent EBR-II fuel
 - FCRD research (separations and fuel)

Fuel Demonstration Project

- Fuel Fabrication- casting was done in a graphite crucible coated with ThO₂:ZrO₂ (95:5)
 - Molds also coated with ThO₂
 - Later a switch was made to ZrO₂- good performance w/o contamination concerns
- Melt Refining- Used fuel is melted allowing volatile elements to volatilize off, more reactive element such as rare earth, alkali, and alkaline earth react with the crucible to form a slag
 - Coatings were not used because interaction was needed
 - Melt would partially reduce crucible and form a slag on top and sides of the crucible
- Several crucible materials were investigated for melt refining and were found to be effective: graphite, Al₂O₃, ZrO₂, ThO₂, BeO
 - CaO stabilized ZrO₂ was used in the hot cell
 - Better Cs separation and higher pouring yields

Fuel Demonstration Project

Nuclear Energy

	Skull	Crucible	Ingot
U	5-10%		90-95%
Pu	5-10%		90-95%
Noble Metals	5-10%		90-95%
Υ	95%	5%	
Rare Earth	95%	5%	
Ва	10%	90%	
Sr	10%	90%	
Te	90%	10%	

Skull- Oxide dross which floats on the melt and adheres to the crucible walls

Crucible- Elements which diffuse into the crucible wall

Ingot- Metal ingot that can be poured from the crucible

Fresh Fuel Fabrication

- EBR-II fresh fuel fabrication includes both U-5Fs and U-10Zr fuels
- U-5Fs alloying was done in a CaO stabilized ZrO₂ crucible
- Fuel Casting was done in a Y₂O₃ wash coated graphite crucible
 - Coating would be removed (wire brushing or scraping) and re-applied each run
- Molds were wash coated with ZrO₂
 - Y2O3 wash coating were investigated but the fuel slug surface finish suffered
 - It is thought that this was due to the Y₂O₃ being water based while the ZrO2 was ethanol based

Current Pyrochemical Recycling

Nuclear Energy

Cathode Processing

- A challenging environment, where compatibility with both U metal and UCl₃-bearing salts at very high temperature is necessary
- In processing of U-10Zr fuel, carryover of several % of zirconium may occur in some processing conditions, which adds another level of melt reactivity
- ZrO₂ has moderate resistance to both metallic U and UCl₃, and selected as a compromise
- Traditional approach was thick coating of ZrO₂ on graphite, but crucible cleaning, recoating, and prefiring of the coating were laborious
- HfN-coated Nb held some promise but found incompatible with zirconium carryover
- Current technology is composite crucible, a graphite shell for handling strength, with ZrO₂ ceramic lining for resistance to dendrite product
 - · Avoids labor of single-use coating
 - · Crucible lifetime increased

6-Liter HfN-coated test crucible

ZrO₂-lined graphite crucible

Current Pyrochemical Recycling

Nuclear Energy

Casting

- Excellent performance of commercially-available
 Y₂O₃ coating
- Salt species are already removed, so less complicated environment
 - If they are not, Y₂O₃ coating will be penetrated, with resulting high carbon content in ingot and potential crucible destruction upon ingot removal
- Low losses and ease of use of Y₂O₃ coating have limited efforts to replace coating with permanent material

Other Possibilities

- A lot of research has been done in this area
 - Many tests have been somewhat conservative or have been overly aggressive
- Test were done with 100% uranium at 1300°C 1600°C
- Test were done with 100% zirconium at 1787°C 2212°C

Other Possibilities

4 C	ducical Elicity							
	1997	S. McDeavitt	ZrN	U	1605	Poor melting	Severe reaction	
	1997	S. McDeavitt	HfN	U	1605	Poor melting	No reaction	
	1997	S. McDeavitt	ZrC	U	1412	GB attack		
	1997	S. McDeavitt	HfC	U	1412	Infiltration	No rxn!!	
	1997	S. McDeavitt	4TaHf-Carbide	U	1412	Wetting	Rxn; 90° CA	
	1997	S. McDeavitt	Ta-Ta₂C	U	1412	Wetting	Bonded; 25° CA	
	1997	S. McDeavitt	TiN	U	1411	Non-wetting	Rxn, layer	
	1997	S. McDeavitt	Y_2O_3	U	1411	Non-wetting	Release	
	1997	S. McDeavitt	MgO	U	1411	Rxn.		
	1997	S. McDeavitt	TiC	U	1411	GB attack		
	1997	S. McDeavitt	BeO	U	1510	Non-wetting	Release	
	1997	S. McDeavitt	$MgZrO_3$	U	1510	Non-wetting	Release	
	1997	S. McDeavitt	CaZrO ₃	U	1510	Non-wetting	Release	
	1997	S. McDeavitt	CaHfO ₃	U	1510	Non-wetting	Release	
	1997	S. McDeavitt	Hf-HfN	U	1325	Wetting	Rxn at 1320°C	
	1997	S. McDeavitt	W	U	1325	Melt/spread at 1177°C		
	1997	S. McDeavitt	YAG	U	1325	Non-wetting	No rxn.	
	1997	S. McDeavitt	$MgAl_2O_4$	U	1325	Non-wetting	Release	
	1978	C.E.Holcombe (Y-12)	TiN	U	1600	Reacted with U above 1407°C	TiN, UN, UO ₂	
	1978	C.E.Holcombe (Y-12)	HfC	U	1600	No significant reaction	No U compounds	
	1978	C.E.Holcombe (Y-12)	CeS	U	1600	No significant reaction	No U compounds	
į.	1978	C.E.Holcombe (Y-12)	Ce ₂ S ₃	U	1600	No significant reaction	No U compounds	
Idaho National Laboratory			Fontana, Wisc	2012 I consin A	_	ıg. 30, 2012	11	

Other Possibilities

2001	S. McDeavitt	ZrN	Zr	2212	Zr did not melt at 1855°C, but at 1975°C (N from ZrN reacted with pure Zr)	Intensive reaction/strong bonding, ZrN _(1-x) formation(~40µm)
2001	S. McDeavitt	HfN	Zr	2212	Melt at ~2100°C (N contamination from HfN of Zr metal)	Intensive reaction. $ZrN_{(1-x)}$ formation (100 μ m). (HfN _(S) + $Zr_{(S)}$ =>HfN _(1-x') + $aZrN_{(1-x')}$ +b $Zr(\alpha)_N$ + cN_2)
2001	S. McDeavitt	Hf ₂ N	Zr	2212	Intensive interaction, $ZrN_{(1-x)}$ formation	
2001	S. McDeavitt	ZrC	Zr	1910	Melt at ~1910°C	No chemical reaction (Clean/Smooth ZrC surface), No tansition phase
2001	S. McDeavitt	Y ₂ O ₃	Zr	~2000	$3Zr_{(s)} + Y_2O_{3(s)} = 3Zr(O) + 2YY$ decreases Zr melting point	Strong bonding, No transition phase
2000	S. McDeavitt	HfC	Zr	2000	No chemical reaction/some interface reaction No tansition phase	
2001	S. McDeavitt	BeO	Zr	2000	Significant/severe reaction at 1550°C	
1995	S. McDeavitt	ZrB_2	Zr	2212	Severe reaction at ~1700°C	
1995	S. McDeavitt	HfB_2	Zr	2212	Severe reaction at 1540°C	
1995	S. McDeavitt	Ta-Ta ₂ C	Zr	1935	Spreading; reaction	
1995	S. McDeavitt	Ce_xS_y	Zr	1787	Sample melted at 1550°C	
1995	S. McDeavitt	Ce_2S_3	Zr	1787	Sample melted at 1550°C	
1995	S. McDeavitt	MgO	Zr	1787	Solid-solid reaction	

Experimental Results

- HfN, TiC, ZrC, and Y2O3 were plasma sprayed onto
 6.35 mm diameter Nb rods
 - Vacuum/inert plasma spraying was not possible
- XRD and SEM/EDX analysis did show oxide contamination on HfN, TiC, and ZrC
- Samples were exposed to U-20Zr (weight percent) at 1550°C for 5 minutes followed by cooling in the melt
- Microstructurally characterized

Experimental Results-HfN

Experimental Results-TiC

Nuclear Energy

Towards top of melt

Towards bottom of melt

Experimental Results- ZrC

Nuclear Energy

Towards bottom of melt Towards top of melt

Experimental Results- Y₂O₃

Conclusions

- Coatings are important for clean melts and can be a source of fuel losses throughout the fuel cycle
- Y₂O₃ is an effective coating for limiting melt/crucible interaction however mechanical and adhesion properties can be an issue
 - Frequent re-coating
- Coating method may play an important role in coating interaction
 - Vacuum vs. non-vacuum for more reactive materials
- More work is needed to identify a more robust coating
 - Currently most research has focused on U and U-Zr alloys- recycled fuel may contain reactive lanthanide that may react with the coatings and subsequently the crucible
 - Sm volatility experiments- Y₂O₃ was reduced by Sm creating much more crucible/melt interaction
 - Alloying agents, i.e. Zr, affect how well the coatings protect the crucible
- Coatings must be evaluated against the process to be used
 - Bottom or tilt pour crucibles may be able to withstand some wetting

Future Work

- More complex coatings- majority of materials that have been studied have been binary compounds-
- Novel coatings- melt refining dross was stable in the U-Fs melts this may be a starting place for a more robust coating for recycled U-Zr fuels
 - UO₂ coatings- oxide layers or rafts are common in melts, these may also be utilized for new coatings
- Disposal crucibles- bare refractory crucibles that can be directly recycled through the pyroprocess?
- Coating application development (CVD, PVD, plasma spray, laser deposition, etc.)

